
Fearless Extension Development
with Rust and PGRX
James Blackwood-Sewell

“I can’t believe
it’s not C”

Lives in

James Blackwood-Sewell

Loves to

Works at

James
Blackwood-Sewell

You all know what Postgres is

#

4

But what about Rust?

5

Rust is best described by its primary features

Modern Compiled Language1

Safety by Construction

Low Level Control

Tooling (pkgs, build, testing)

Can run inside Postgres

2

3

Compatibility with C4

5

6

 * important for me

Great slides: Considering Rust …

https://docs.google.com/presentation/d/1Ckv7qiUWXn8cFWYX6YdzeczI7uV1cIl8J3O6wdsZfL8/edit?usp=sharing

6

And what about PGRX?

7

PGRX is a Framework for PostgreSQL

● PGRX exposes the PostgreSQL C API via safe Rust code,
removing many opportunities for crash or corruption

● PGRX Rust code is compiled and runs close to the speed of C, and
many times faster than code in a PL/ language

● PGRX helps out with your development process; from
auto-creating SQL objects, to testing and packaging your extension

● PGRX makes high performance PostgreSQL Extensions more
accessible

A bit of history …
 * things got good around here

2019 20212018 2020 2023

PGX transferred to
TCDI

Jeff Davis writes
postgres-extension.rs
as a conference POC

Eric Ridge
unveils PGX

PGRX donated to
Postgres

Foundation

Benjamin Fry
starts pg-extend-rs

You got involved
here?

9

What does PGRX get you?

10

A fully managed development environment …

● cargo pgrx new: Create new extensions quickly

● cargo pgrx init: Install new (or register existing) PostgreSQL installs

● cargo pgrx run: Run your extension and interactively test it in psql (or pgcli)

● cargo pgrx test: Unit-test your extension across multiple PostgreSQL versions

● cargo pgrx package: Create installation packages for your extension

11

Target Multiple Postgres Versions

● Support from Postgres 12 to Postgres 17 from the same codebase

● Use Rust feature gating to use version-specific APIs

● Seamlessly test against all versions

12

Automatic Schema Generation

● Implement extensions entirely in Rust

● Automatic mapping for many Rust types into PostgreSQL

● SQL schemas generated automatically (or manually via cargo pgrx schema)

● Include custom SQL with extension_sql! & extension_sql_file!

13

Safety First

● Translates Rust panic! into Postgres ERROR that abort the transaction, not the
process

● Memory Management follows Rust's drop semantics, even in the face of panic!
and elog(ERROR)

● #[pg_guard] procedural macro to ensure the above

● Postgres Datums are Option<T> where T: FromDatum

● NULL Datums are safely represented as Option::<T>::None

14

First-class UDF support

● Annotate functions with #[pg_extern] to expose them to Postgres

● Return pgrx::iter::SetOfIterator<'a, T> for RETURNS SETOF

● Return pgrx::iter::TableIterator<'a, T> for RETURNS TABLE (...)

● Create trigger functions with #[pg_trigger]

15

Easy Custom Types

● #[derive(PostgresType)] to use a Rust struct as a Postgres type

○ represented as a CBOR-encoded object in-memory/on-disk

○ Represented as JSON when it needs to be human-readable

● #[derive(PostgresEnum)] to use a Rust enum as a Postgres enum

● Composite types supported with the pgrx::composite_type!() macro

16

Advanced Features

● Safe access to Server Programming Interface SPI

● Safe access to MemoryContext system via pgrx::PgMemoryContexts

● Executor/planner/transaction/subtransaction hooks

● Safely use Postgres-provided pointers with pgrx::PgBox<T>

● Access Postgres' logging system through macros

● Direct unsafe access to large parts of Postgres internals via the pgrx::pg_sys
module

● Implement background workers, wal decoders, use shared memory …

18

 Why not just use C?

19

Why Not use C indeed …

✅ No segfaults.

✅ No buffer overflows.

✅ No null pointers.

✅ No data races.

✅ Powerful type system.

✅ Unified build system.

✅ Dependency management.

✅ Wonderful extension ergonomics.

- 20 -

My PGRX Journey
● Architected, deployed and supported Postgres solutions

● Wrote (hacky) code in Python

● Wanted to write extensions, but hadn’t used C professionally

● Found Rust (❤)

● Able to write extensions

- 21 -

Timescaleʼs PGRX Journey
● Built TimescaleDB in C

● Wrote timescaledb_toolkit + promscale extensions in Rust

● Continued to add TimescaleDB features in C …

● Wrote pgvectorscale with Rust

● Continued to add TimescaleDB features in C …

I moved the PostgreSQL Anonymizer extension to PGRX recently and
rewrote about 1000 lines of C code in a few weeks of work without
any prior knowledge of Rust.

The immediate benefits were :

- development comfort
- improved unit testing
- use of high-level Rust libraries (faker-rs)
- stability ("goodbye segfaults!")

Overall developing a Postgres extension is a huge responsibility
because users might run your code on their production instances.

Thanks to the Rust safety model, they have the guarantee that a bug
within the extension will not crash the entire instance.

Damien Clochard,
co-founder Dalibo

pgrx has been a joy to work with, happy to see it advertised
to the broader community.

My application involves some custom types and a planner
hook.

It took me less than 2 months to convert ~1000 lines of C
extension to rust, add a ton of new features, and fix several
insidious bugs along the way.

I wound up with ~4000 lines of rust including ~2000 lines of
tests, and way more confidence that it does the right thing.

Will Murnane

We wouldn't have been able to release pgvectorscale as
quickly or fearlessly without PGRX and Rust. The extension
development tooling and Rust stdlib and crate ecosystem
are second to none.

We were able to build pgvectorscale 5x faster which is the
difference between having a product fully released in a
quarter and year!

Matvey Arye,
Founding Engineer
Timescale

PGRX is Awesome
Paul Copplestone
CEO, Supabase

 PGRX took my extension to the next level when I
migrated the C to Rust.

 Also I could sleep at night, not waiting for a hidden

C-based segfault I never thought about taking out
production

Matth

A Demo speaks 1000 words

#

+ =
In the live demo the benchmark was slow -> I forgot to run with –release mode!

27

perhaps I forgot to read the room

28

PG changes could also help PGRX

● Threading in Postgres is 🐉
● A major improvement would be

Sigprocmask -> pthread_sigmask

Tom Lane said:
> I think the short answer about threading in bgworkers (or any other
> backend process) is "we don't support it; if you try it and it breaks,
> which it likely will, you get to keep both pieces".

The use of sigprocmask() is unspecified in a multithreaded
process; see pthread_sigmask(3).

https://man7.org/linux/man-pages/man3/pthread_sigmask.3.html

PG
curious

PG
contrib

Learn
via Rust

Learn
via C

Postgres Needs You
(maybe not you, other yous)

If you’re interested, come play!

#

Github: https://github.com/pgcentralfoundation/pgrx
Github examples: ./pgrx_examples
Discord: https://discord.gg/hPb93Y9
Twitter: @pgrx_rs

https://github.com/pgcentralfoundation/pgrx
https://discord.gg/hPb93Y9

Thank-you
(and happy PGRXing)

#

Snappity snap,
we would love your feedback!

